반응형
반응형
FuncAnimation matplotlib의 시각화된 자료를 동적(애니메이션)으로 보여주게 하는 함수 필요한 라이브러리 import matplotlib.pyplot as plt import matplotlib.animation as animation 함수 사용 방법 animation.FuncAnimation(fig, func, frame=N, fargs(x, y, ax), interval=N, repeat=False) fig : matplotlib의 figure 객체 func: 프레임마다 특정 기능을 수행 할 함수 호출 frames : 애니메이션이 실행 될 총 프레임 수 fargs : 애니메이션이 실행 될 때 전달 받을 값 interval : 애니메이션이 실행될 프레임 간격의 주기, 기본값은 200(0..
Conditional kernel density estimate seaborn components used: set_theme(), load_dataset(), displot() import seaborn as sns sns.set_theme(style="whitegrid") # Load the diamonds dataset diamonds = sns.load_dataset("diamonds") # Plot the distribution of clarity ratings, conditional on carat sns.displot( data=diamonds, x="carat", hue="cut", kind="kde", height=6, multiple="fill", clip=(0, None), palet..
Pair Grid Paired density and scatterplot matrix seaborn components used: set_theme(), load_dataset(), PairGrid import seaborn as sns sns.set_theme(style="white") df = sns.load_dataset("penguins") g = sns.PairGrid(df, diag_sharey=False) g.map_upper(sns.scatterplot, s=15) g.map_lower(sns.kdeplot) g.map_diag(sns.kdeplot, lw=2) Paired categorical plots seaborn components used: set_theme(), load_data..
Scatterplot with multiple semantics seaborn components used: set_theme(), load_dataset(), despine(), scatterplot() import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") # Load the example diamonds dataset diamonds = sns.load_dataset("diamonds") # Draw a scatter plot while assigning point colors and sizes to different # variables in the dataset f, ax = plt.subplot..
Stacked histogram on a log scale seaborn components used: set_theme(), load_dataset(), despine(), histplot() import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt sns.set_theme(style="ticks") diamonds = sns.load_dataset("diamonds") f, ax = plt.subplots(figsize=(7, 5)) sns.despine(f) sns.histplot( diamonds, x="price", hue="cut", multiple="stack", palette="light:m_r", edge..
Multiple bivariate KDE plots seaborn components used: set_theme(), load_dataset(), kdeplot() import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="darkgrid") iris = sns.load_dataset("iris") # Set up the figure f, ax = plt.subplots(figsize=(8, 8)) ax.set_aspect("equal") # Draw a contour plot to represent each bivariate density sns.kdeplot( data=iris.query("species != 'versico..