반응형
Anscombe’s quartet
seaborn components used: set_theme(), load_dataset(), lmplot()
import seaborn as sns
sns.set_theme(style="ticks")
# Load the example dataset for Anscombe's quartet
df = sns.load_dataset("anscombe")
# Show the results of a linear regression within each dataset
sns.lmplot(x="x", y="y", col="dataset", hue="dataset", data=df,
col_wrap=2, ci=None, palette="muted", height=4,
scatter_kws={"s": 50, "alpha": 1})
Faceted logistic regression
seaborn components used: set_theme(), load_dataset(), lmplot()
import seaborn as sns
sns.set_theme(style="darkgrid")
# Load the example Titanic dataset
df = sns.load_dataset("titanic")
# Make a custom palette with gendered colors
pal = dict(male="#6495ED", female="#F08080")
# Show the survival probability as a function of age and sex
g = sns.lmplot(x="age", y="survived", col="sex", hue="sex", data=df,
palette=pal, y_jitter=.02, logistic=True, truncate=False)
g.set(xlim=(0, 80), ylim=(-.05, 1.05))
Multiple linear regression
seaborn components used: set_theme(), load_dataset(), lmplot()
import seaborn as sns
sns.set_theme()
# Load the penguins dataset
penguins = sns.load_dataset("penguins")
# Plot sepal width as a function of sepal_length across days
g = sns.lmplot(
data=penguins,
x="bill_length_mm", y="bill_depth_mm", hue="species",
height=5
)
# Use more informative axis labels than are provided by default
g.set_axis_labels("Snoot length (mm)", "Snoot depth (mm)")
반응형